
1

Code Optimization

Chapter 10



2

The Code Optimizer

• Control flow analysis: CFG (Ch. 9)

• Data-flow analysis

• Transformations

Front

end

Code

generator

Code

optimizer

Control-

flow

analysis

Data-

flow

analysis

Transfor-

mations



3

Code Optimizations

• Local/global common subexpression elimination

• Dead-code elimination

• Instruction reordering

• Constant folding

• Algebraic transformations

• Copy propagation

• Loop optimizations



4

Loop Optimizations

• Code motion

• Induction variable elimination

• Reduction in strength

• … lots more



5

Code Motion

i := 0

t2 := 4*i

A[t2] := 0

i := i+1

t1 := n-2

if i < t1 goto B2

B1:

B2:

B3:

i := 0

t1 := n-2

t2 := 4*i

A[t2] := 0

i := i+1

if i < t1 goto B2

B1:

B2:

B3:

Move loop-invariant computations before the loop



6

Strength Reduction

i := 0

t1 := n-2

t2 := 4*i

A[t2] := 0

i := i+1

if i < t1 goto B2

B1:

B2:

B3:

i := 0

t1 := n-2

t2 := 4*i

A[t2] := 0

i := i+1

t2 := t2+4

if i < t1 goto B2

B1:

B2:

B3:

Replace expensive computations with induction variables



7

Reduction Variable Elimination

i := 0

t1 := n-2

t2 := 4*i

A[t2] := 0

i := i+1

t2 := t2+4

if i<t1 goto B2

B1:

B2:

B3:

t1 := 4*n

t1 := t1-8

t2 := 4*i

A[t2] := 0

t2 := t2+4

if t2<t1 goto B2

B1:

B2:

B3:

Replace induction variable in expressions with another



8

Determining Loops in Flow 

Graphs: Dominators

• Dominators: d dom n

– Node d of a CFG dominates node n if every path from 

the initial node of the CFG to n goes through d

– The loop entry dominates all nodes in the loop

• The immediate dominator m of a node n is the last 

dominator on the path from the initial node to n

– If d  n and d dom n then d dom m



9

Dominator Trees

1

2

3

4

5 6

7

8

9 10

1

2 3

4

65 7

8

9 10

CFG Dominator tree



10

Natural Loops

• A back edge is is an edge a b whose head b
dominates its tail a

• Given a back edge n d
– The natural loop consists of d plus the nodes that can 

reach n without going through d

– The loop header is node d

• Unless two loops have the same header, they are 
disjoint or one is nested within the other

– A nested loop is an inner loop if it contains no other 
loops



11

Natural (Inner) Loops Example

1

2

3

4

5 6

7

8

9 10

1

2 3

4

65 7

8

9 10

CFG Dominator tree

Natural loop

for 7 dom 10

Natural loop

for 3 dom 4



12

Pre-Headers

• To facilitate loop transformations, a 

compiler often adds a preheader to a loop

• Code motion, strength reduction, and other 

loop transformations populate the preheader

Header Header

Preheader



13

Reducible Flow Graphs

1

2

3

4

Example of a

reducible CFG

1

2 3

Example of a

nonreducible CFG

• Reducible graph = disjoint partition in 

forward and back edges such that the 

forward edges form an acyclic (sub)graph



14

Global Data-Flow Analysis

• To apply global optimizations on basic blocks, 
data-flow information is collected by solving 
systems of data-flow equations

• Suppose we need to determine the reaching 
definitions for a sequence of statements S

out[S] = gen[S]  (in[S] - kill[S])

d1: i := m-1

d2: j := n

d3: j := j-1

B1:

B2:

B3:

out[B1] = gen[B1] = {d1, d2}

out[B2] = gen[B2]  {d1} = {d1, d3}

d1 reaches B2 and B3 and

d2 reaches B2, but not B3

because d2 is killed in B2



15

Reaching Definitions

S d: a:=b+c

Then, the data-flow equations for S are:

gen[S] = {d}

kill[S] = Da - {d}

out[S] = gen[S]  (in[S] - kill[S])

where Da = all definitions of a in the region of code

is of the form



16

Reaching Definitions

S

gen[S] = gen[S2]  (gen[S1] - kill[S2])

kill[S] = kill[S2]  (kill[S1] - gen[S2])

in[S1] = in[S]

in[S2] = out[S1]

out[S] = out[S2]

is of the form

S2

S1



17

Reaching Definitions

S

gen[S] = gen[S1]  gen[S2] 

kill[S] = kill[S1]  kill[S2]

in[S1] = in[S]

in[S2] = in[S]

out[S] = out[S1]  out[S2]

is of the form

S2S1



18

Reaching Definitions

S

gen[S] = gen[S1] 

kill[S] = kill[S1]

in[S1] = in[S]  gen[S1]

out[S] = out[S1]

is of the form

S1



19

Example Reaching Definitions
d1: i := m-1;

d2: j := n;

d3: a := u1;

do

d4: i := i+1;

d5: j := j-1;

if e1 then

d6: a := u2

else

d7: i := u3

while e2

;

gen={d1}

kill={d4, d7}
d1

gen={d2}

kill={d5}
d2

gen={d1,d2}

kill={d4,d5,d7}

;

d3

gen={d3}

kill={d6}

gen={d1,d2,d3}

kill={d4,d5,d6,d7}

;
gen={d3,d4,d5,d6,d7}

kill={d1,d2}

do

;

gen={d4}

kill={d1, d7}
d4

;

gen={d5}

kill={d2}
d5

if

e1

d6 d7
e1

gen={d6}

kill={d3}

gen={d7}

kill={d1,d4}

gen={d4,d5}

kill={d1,d2,d7}

gen={d4,d5,d6,d7}

kill={d1,d2}

gen={d4,d5,d6,d7}

kill={d1,d2}

gen={d6,d7}

kill={}



20

Using Bit-Vectors to Compute 

Reaching Definitions
d1: i := m-1;

d2: j := n;

d3: a := u1;

do

d4: i := i+1;

d5: j := j-1;

if e1 then

d6: a := u2

else

d7: i := u3

while e2

;

d1 d2

;

d3

;
0011111

1100000

do

;

d4

;

d5

if

e1

d6 d7
e1

1110000

0001111

1100000

0001101

1000000

0001001

0100000

0000100

0010000

0000010

0001111

1100000

0001111

1100000

0001100

1100001

0001000

1000001

0000100

0100000

0000010

0010000

0000001

1001000

0000011

0000000



21

Accuracy, Safeness, and 

Conservative Estimations

• Conservative: refers to making safe assumptions 

when insufficient information is available at 

compile time, i.e. the compiler has to guarantee 

not to change the meaning of the optimized code

• Safe: refers to the fact that a superset of reaching 

definitions is safe (some may be have been killed)

• Accuracy: the larger the superset of reaching 

definitions, the less information we have to apply 

code optimizations



22

Reaching Definitions are a 

Conservative (Safe) Estimation

S2S1

Suppose this

branch is

never taken

Estimation:

gen[S] = gen[S1]  gen[S2] 

kill[S] = kill[S1]  kill[S2]

Accurate:

gen’[S] = gen[S1]  gen[S]

kill’[S] = kill[S1]  kill[S]



23

Reaching Definitions are a 

Conservative (Safe) Estimation

in[S1] = in[S]  gen[S1]S1

Why gen?

S
is of the form

The problem is that

in[S1] = in[S]  out[S1]

makes more sense, but we cannot solve this

directly, because out[S1] depends on in[S1]



24

Reaching Definitions are a 

Conservative (Safe) Estimation

d: a:=b+cWe have:

(1) in[S1] = in[S]  out[S1]

(2) out[S1] = gen[S1]  (in[S1] - kill[S1])

Solve in[S1] and out[S1] by estimating in1[S1] using safe but

approximate out[S1]=, then re-compute out1[S1] using (2) to estimate in2[S1], etc.

in1[S1] =(1) in[S]  out[S1] = in[S]

out1[S1] =(2) gen[S1]  (in1[S1] - kill[S1]) = gen[S1]  (in[S] - kill[S1])

in2[S1] =(1) in[S]  out1[S1] = in[S]  gen[S1]  (in[S] - kill[S1]) = in[S]  gen[S1] 

out2[S1] =(2) gen[S1]  (in2[S1] - kill[S1]) = gen[S1]  (in[S]  gen[S1] - kill[S1])

= gen[S1]  (in[S] - kill[S1]) 

Because out1[S1] = out2[S1], and therefore in3[S1] = in2[S1], we conclude that

in[S1] = in[S]  gen[S1]


