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Code Optimization

Chapter 10
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The Code Optimizer

• Control flow analysis: CFG (Ch. 9)

• Data-flow analysis

• Transformations
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Code Optimizations

• Local/global common subexpression elimination

• Dead-code elimination

• Instruction reordering

• Constant folding

• Algebraic transformations

• Copy propagation

• Loop optimizations
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Loop Optimizations

• Code motion

• Induction variable elimination

• Reduction in strength

• … lots more
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Code Motion

i := 0

t2 := 4*i

A[t2] := 0

i := i+1

t1 := n-2

if i < t1 goto B2

B1:

B2:

B3:

i := 0

t1 := n-2

t2 := 4*i

A[t2] := 0

i := i+1

if i < t1 goto B2

B1:

B2:

B3:

Move loop-invariant computations before the loop
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Strength Reduction

i := 0

t1 := n-2

t2 := 4*i

A[t2] := 0

i := i+1

if i < t1 goto B2

B1:

B2:

B3:

i := 0

t1 := n-2

t2 := 4*i

A[t2] := 0

i := i+1

t2 := t2+4

if i < t1 goto B2

B1:

B2:

B3:

Replace expensive computations with induction variables
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Reduction Variable Elimination

i := 0

t1 := n-2

t2 := 4*i

A[t2] := 0

i := i+1

t2 := t2+4

if i<t1 goto B2

B1:

B2:

B3:

t1 := 4*n

t1 := t1-8

t2 := 4*i

A[t2] := 0

t2 := t2+4

if t2<t1 goto B2

B1:

B2:

B3:

Replace induction variable in expressions with another
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Determining Loops in Flow 

Graphs: Dominators

• Dominators: d dom n

– Node d of a CFG dominates node n if every path from 

the initial node of the CFG to n goes through d

– The loop entry dominates all nodes in the loop

• The immediate dominator m of a node n is the last 

dominator on the path from the initial node to n

– If d  n and d dom n then d dom m
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Dominator Trees
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Natural Loops

• A back edge is is an edge a b whose head b
dominates its tail a

• Given a back edge n d
– The natural loop consists of d plus the nodes that can 

reach n without going through d

– The loop header is node d

• Unless two loops have the same header, they are 
disjoint or one is nested within the other

– A nested loop is an inner loop if it contains no other 
loops
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Natural (Inner) Loops Example
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Natural loop

for 7 dom 10

Natural loop

for 3 dom 4
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Pre-Headers

• To facilitate loop transformations, a 

compiler often adds a preheader to a loop

• Code motion, strength reduction, and other 

loop transformations populate the preheader

Header Header

Preheader
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Reducible Flow Graphs
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• Reducible graph = disjoint partition in 

forward and back edges such that the 

forward edges form an acyclic (sub)graph
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Global Data-Flow Analysis

• To apply global optimizations on basic blocks, 
data-flow information is collected by solving 
systems of data-flow equations

• Suppose we need to determine the reaching 
definitions for a sequence of statements S

out[S] = gen[S]  (in[S] - kill[S])

d1: i := m-1

d2: j := n

d3: j := j-1

B1:

B2:

B3:

out[B1] = gen[B1] = {d1, d2}

out[B2] = gen[B2]  {d1} = {d1, d3}

d1 reaches B2 and B3 and

d2 reaches B2, but not B3

because d2 is killed in B2
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Reaching Definitions

S d: a:=b+c

Then, the data-flow equations for S are:

gen[S] = {d}

kill[S] = Da - {d}

out[S] = gen[S]  (in[S] - kill[S])

where Da = all definitions of a in the region of code

is of the form
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Reaching Definitions

S

gen[S] = gen[S2]  (gen[S1] - kill[S2])

kill[S] = kill[S2]  (kill[S1] - gen[S2])

in[S1] = in[S]

in[S2] = out[S1]

out[S] = out[S2]

is of the form

S2

S1
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Reaching Definitions

S

gen[S] = gen[S1]  gen[S2] 

kill[S] = kill[S1]  kill[S2]

in[S1] = in[S]

in[S2] = in[S]

out[S] = out[S1]  out[S2]

is of the form

S2S1
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Reaching Definitions

S

gen[S] = gen[S1] 

kill[S] = kill[S1]

in[S1] = in[S]  gen[S1]

out[S] = out[S1]

is of the form

S1
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Example Reaching Definitions
d1: i := m-1;

d2: j := n;

d3: a := u1;

do

d4: i := i+1;

d5: j := j-1;

if e1 then

d6: a := u2

else

d7: i := u3

while e2

;

gen={d1}

kill={d4, d7}
d1

gen={d2}

kill={d5}
d2

gen={d1,d2}

kill={d4,d5,d7}

;

d3

gen={d3}

kill={d6}

gen={d1,d2,d3}

kill={d4,d5,d6,d7}

;
gen={d3,d4,d5,d6,d7}

kill={d1,d2}

do

;

gen={d4}

kill={d1, d7}
d4

;

gen={d5}

kill={d2}
d5

if

e1

d6 d7
e1

gen={d6}

kill={d3}

gen={d7}

kill={d1,d4}

gen={d4,d5}

kill={d1,d2,d7}

gen={d4,d5,d6,d7}

kill={d1,d2}

gen={d4,d5,d6,d7}

kill={d1,d2}

gen={d6,d7}

kill={}
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Using Bit-Vectors to Compute 

Reaching Definitions
d1: i := m-1;

d2: j := n;

d3: a := u1;

do

d4: i := i+1;

d5: j := j-1;

if e1 then

d6: a := u2

else

d7: i := u3

while e2

;

d1 d2

;

d3

;
0011111

1100000

do

;

d4

;

d5

if

e1

d6 d7
e1

1110000

0001111

1100000

0001101

1000000

0001001

0100000

0000100

0010000

0000010

0001111

1100000

0001111

1100000

0001100

1100001

0001000

1000001

0000100

0100000

0000010

0010000

0000001

1001000

0000011

0000000
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Accuracy, Safeness, and 

Conservative Estimations

• Conservative: refers to making safe assumptions 

when insufficient information is available at 

compile time, i.e. the compiler has to guarantee 

not to change the meaning of the optimized code

• Safe: refers to the fact that a superset of reaching 

definitions is safe (some may be have been killed)

• Accuracy: the larger the superset of reaching 

definitions, the less information we have to apply 

code optimizations
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Reaching Definitions are a 

Conservative (Safe) Estimation

S2S1

Suppose this

branch is

never taken

Estimation:

gen[S] = gen[S1]  gen[S2] 

kill[S] = kill[S1]  kill[S2]

Accurate:

gen’[S] = gen[S1]  gen[S]

kill’[S] = kill[S1]  kill[S]
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Reaching Definitions are a 

Conservative (Safe) Estimation

in[S1] = in[S]  gen[S1]S1

Why gen?

S
is of the form

The problem is that

in[S1] = in[S]  out[S1]

makes more sense, but we cannot solve this

directly, because out[S1] depends on in[S1]
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Reaching Definitions are a 

Conservative (Safe) Estimation

d: a:=b+cWe have:

(1) in[S1] = in[S]  out[S1]

(2) out[S1] = gen[S1]  (in[S1] - kill[S1])

Solve in[S1] and out[S1] by estimating in1[S1] using safe but

approximate out[S1]=, then re-compute out1[S1] using (2) to estimate in2[S1], etc.

in1[S1] =(1) in[S]  out[S1] = in[S]

out1[S1] =(2) gen[S1]  (in1[S1] - kill[S1]) = gen[S1]  (in[S] - kill[S1])

in2[S1] =(1) in[S]  out1[S1] = in[S]  gen[S1]  (in[S] - kill[S1]) = in[S]  gen[S1] 

out2[S1] =(2) gen[S1]  (in2[S1] - kill[S1]) = gen[S1]  (in[S]  gen[S1] - kill[S1])

= gen[S1]  (in[S] - kill[S1]) 

Because out1[S1] = out2[S1], and therefore in3[S1] = in2[S1], we conclude that

in[S1] = in[S]  gen[S1]


